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For an exothermic reaction to lead to explosion, critical criteria involving reactant geometry, reaction
kinetics, heat transfer and temperature have to be satisfied. In favourable cases, the critical conditions
may be summarized in a single parameter, Frank-Kamenetskii’s ¢ being the best known, but analytical
treatments are either confined to idealized geometries, namely, the sphere, infinite cylinder or infinite
slab, or require the simplest representations of heat transfer.

In the present paper a general steady-state description is given of the critical conditions for explosion
of an exothermic reactant mass of virtually unrestricted geometry in which heat flow is resisted both
internally (conductive flow) and at the surface (Newtonian cooling). The description is founded
upon the behaviour of stationary-state systems under two extremes of Biot number—that corresponding
to Semenov’s case (Bi— 0) and that corresponding to Frank-Kamenetskii’s case (Bi — 00); it covers
these and intermediate cases.

For Semenov’s conditions, the solution is already known, but a fresh interpretation is given in terms
of a characteristic dimension—the mean radius Rs. A variety of results for criticality is tabulated.

For Frank-Kamenetskii’s conditions, the central result is an approximate general solution for the
stationary temperature distribution within any body having a centre. Critical conditions follow naturally.
They have the simple form:

oA exp (—E/RT,) ,
[g KIP;’;'Z/E/ Rg] = 0u(Ry) = 3F(J):

where F(j) is close to unity, being a feeble function of shape through a universally defined shape para-
meter j, and 0, (R,) is Frank-Kamenetskii’s ¢ evaluated in terms of a universally defined characteristic
dimension Rj—a harmonic square mean radius weighted in proportion to solid angle:

1 1 dw
7w l]%
Expressions for the mean radius R, have been evaluated and are tabulated for a broad range of geo-
metries. The critical values generated for ¢ are only about 19, in error for a great diversity of shapes.
No adjustable parameters appear in the solution and there is no requirement of an ad hoc treatment of
any particular geometric feature, all bodies being treated identically. Critical sizes are evaluated for
many different shapes.
For arbitrary shape and arbitrary Biot number (0 < Bi < c0) an empirical criterion is proposed
which predicts critical sizes for a great diversity of cases to within a few parts per cent.
Rigorous, closely adjacent upper and lower bounds on critical sizes are derived and compared with
our results and with previous investigations, and the status of previous approaches is assessed explicitly.
For the most part they lack the generality, precision and ease of application of the present approach.
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SPONTANEOUS IGNITION 469

1. INTRODUCTION

In a recent review (Gray & Lee 1967 a) of thermal explosion theory, Gray and Lee discuss the
problem of defining criticality for bodies of various shapes in which temperatures vary from
point to point, and list the main attempts to attack this problem. Most approaches are based
on the parameter ¢ of Frank-Kamenetskii which was defined originally for the three geometrically
simple configurations in which temperature is a function of one coordinate only—the sphere,
the infinite cylinder and the infinite slab. For these

atogEAexp (— E[RT,)

4 «kRT? ’

where g, is the radius or half~width, and the critical values are known to be 3.32, 2 and 0.88
respectively. Arbitrarily weighted means have been employed to estimate J,, for spherocylinders
but, for compact bodies, most progress has been made in terms of the concept of the equivalent
sphere—that sphere of the same material which explodes at the same ambient temperature as
the body in question. Previous treatments have been restricted to the simple limiting case of
Frank-Kamenetskii (Dirichlet) boundary conditions, which fix the surface temperature at the
ambient value (and correspond to infinite Biot number). Additional conspicuous deficiencies
prompting the present treatment are the arbitrary nature of the putative equivalences invoked,
the poor precision of their results, and their inability to cope with more than a few simple
geometries.

Treatments in terms of averaged temperatures (Semenov boundary conditions, zero Biot
number) are far simpler. The surface to volume ratio is the only geometrical feature that matters,
and it is the purpose of the present paper to build on this, and on those already examined cases
in which temperatures vary from point to point, in order to derive analytically a practically
useful criterion of almost unrestricted applicability. The feature distinguishing our approach from
earlier ones is that it is founded on a general solution (although inexact) of the corresponding
heat balance equation, and not on a study of some other physical situation which is amenable
to analysis and deemed intuitively to be similar. The results will be compared with a range of
previously and newly derived exact results and with previous approximate approaches (some
of which appear to contain errors) and finally extended to the generalized boundary conditions
where interior, surface and ambient temperatures are all different (arbitrary Biot number).

Among physically understandable consequences is the dominance of the smallest dimensions
of a body in determining criticality—harmonic means and harmonic square mean distances
being a natural feature of the analysis.

The notation employed is partly novel in order to cope with the more general scope; it is
set out in appendix 1.

2. SEMENOV’S BOUNDARY CONDITIONS—UNIFORM
INTERNAL TEMPERATURE

Under Semenov boundary conditions the thermal conductivity of the reactant mass is so great
that the internal temperature 7' is essentially constant throughout the volume V occupied,
and exceeds the ambient value 7,. The heat balance equation for the system is thus extremely
simple and the criticality problem for arbitrary shapes is a trivial one. The complete solution

33-2
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470 T.BODDINGTON, P. GRAY AND D.I. HARVEY
of the problem is given by Semenov’s classical approach (Semenov 1928). A steady state
exists if
¢ < wcr =el,
_(V\ (qcAEexp (- E[RT,
where = (5) (R ),

H is the heat transfer coeflicient at the surface S and ¢, o, 4, E are the exothermicity per unit
mass, density, pre-exponential factor and activation energy, respectively, of the reactant.

The (Semenov) equivalent sphere (i.e. that sphere of the same reactant which has the same
critical temperature when subjected to the same surface heat transfer coefficient) is clearly one of
the same volume/surface ratio, i e. with radius given by Ry = 3V/S. This result may be given a
simple and instructive geometric interpretation: Rg can be written in the form

RS=3g=s—lﬂsa.d5=s—lﬂsmsz<1>S, (2.1)

where aisthe radius vector from anorigin (which is arbitrarily located inside or outside the surface)
to the surface element d.§, and /is the length of the perpendicular from the origin onto the plane
containing d.§' (see figure 1). Thus the Semenov equivalent sphere radius is the mean distance of the surface
Jfrom any centre. An immediate consequence of this is that the body formed from a sphere by
completely enclosing it in any (finite or infinite) number of tangent planes is the (Semenov)
equivalent of that sphere. If now any number of plane cuts are made in planes lying outside
the sphere to remove material from the body, then the resulting body has a Semenov sphere
radius greater than that of the original sphere. Practically, this indicates conditions under which
removal of ‘protuberances’ leads to an increased explosion hazard (i.e. reduced critical temper-
ature) despite reduction in total mass.

Ficure 1. Some geometric features of a surface. V reactant mass, § its surface, d§ element of surface, p tangent
plane of dS, » the normal of dS, O body centre, dw solid angle subtended at O by dS, r radius vector. The
coordinate p of the general point P is defined to be OP/OPg.

Results for some simple shapes. These are set out in table 1. Clearly there is no difficulty in finding
V' and S, and thus Rg for any shape—although it may involve quadrature (see appendix 2 (a)).
Rg is well behaved in the sense that it remains finite so long as any one characteristic dimension
remains finite. Physically, of course, we know that extension without limit in one or two directions
does not lead to explosion i.e. does not make Rg tend to infinity. Rq has the nature of a harmonic
mean dimension, so that it is the smallest dimension of the body which dominates the Semenov
sphere radius. This is well illustrated by the expression for the rectangular brick (2a x 25 x 2¢):
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R3' = L(a*+ b1 +¢7*). This result suggests that an approximate value of the squared Frank-
Kamenetskii sphere radius is some form of harmonic mean of the squared characteristic distances

of the body, and prompts the analysis of the next section.

TaBLE 1. THE RECIPROCAL SEMENOV RADIUS, Rg' = S/3V, FOR SOME SIMPLE GEOMETRIES

geometry
oo slab, thickness = 24

oo cylinder, radius a }
oo square rod, side 2a

sphere, radius a ]\
cube, side 2a
equicylinder, height = diameter = QaJ

rectangular brick (2a x 2b % 2¢)
oo rectangular rod (2a x 2b)
cylinder, length 24, radius a

as above, capped by hemispheres
equiconvex lens, thickness 21,}
aperture 2¢, g = ¢/l—1

spheroid, semi-axes a, b; @ < b,}
excentricity v = b~1(h2—a?)¥

1 1—p2 1+4+v
oblate: C = 3 [1+~—2—V——ln (1—_;)]

-1
RS
241

a1

a1+ b1+
a4+
$(2a71+d)
G o R
1 Ltatape

L+ 3+ ip

Ca1, where:
I<C<1

IT=078 < C< 1

1 in—1
prolate: C' = 3 I:J(1~V2) +smV V:l

For further results see appendix 2 (a).

3. DISTRIBUTED TEMPERATURES: FRANK-KAMENETSKII’S
BOUNDARY CONDITIONS

3(a). Introduction

The problem of describing the temperature distribution and hence of deriving critical con-
ditions for explosion becomes extremely complicated when Semenov’s boundary conditions
no longer apply. For then there is no longer a single temperature which describes the system and
(in general) the temperature is a point function depending on three spatial coordinates. Symmetry
properties of the reactant mass may permit a description in terms of only one or two spatial
coordinates. The geometries describable in terms of only a single spatial coordinate, i.e. the
infinite slab, the infinite circular cylinder and sphere (which for convenience we shall call class A
geometries), have been extensively studied (Frank-Kamenetskii 1955; Chambré 1952; Chandra-
sekhar & Wares 1949; Boddington & Gray 1970; Merzhanov & Dubovitskii 1958) and the nature
of their temperature profiles and of their critical conditions is well known. The tractability of
the one-dimensional problems is a consequence of the simplicity of the equation describing
local heat balance—an ordinary second-order differential equation. For geometries other than
class A we must solve a partial second-order differential equation in two or three independent
variables. For realistic dependences of reaction rate on temperature the differential equation is,
moreover, nonlinear, and thus the method of separation of variables is not applicable. No general
analytic solutions are known of the intractable equations describing particular geometries of
interest other than class A. It would seem that a general solution is beyond reach. Numerical
solutions may be carried out in a straightforward manner for a particular shape and boundary
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472 T.BODDINGTON, P. GRAY AND D.I. HARVEY

condition, but the identification of the critical conditions even for a single geometric shape re-
quires extensive computation. It seems unlikely that a numerical approach can yield much
general insight into the problem.

Because of the very considerable difficulties outlined above we proceed, in this section, by
using a general—although inexact—solution of the basic equation based on (and indeed reducing
to) the known exact solutions for class A geometries. A number of features of our approximate
solution lend it plausibility, but it is extremely difficult to give a general a prior: discussion of its
precision. Ultimately our approach is justified by the good agreement between its results and
known exact results for a wide range of geometries. It is inherent in our approach that the body
under discussion should possess a centre of symmetry (see however § 8). Further, we would only
assert that our solutions are satisfactory for reactant masses bounded by surfaces that are every-
where convex outwards. The latter two conditions apart, our solution is entirely general. No
ad hoc treatment of particular geometric features is required and no adjustable parameters appear
in the solution.

3(b). Local conservation of energy

In general our systems are completely described by the equations expressing local conserva-
tion of energy divgrad T+godexp (—E/RT) =0 inV, (3.1)
kdT/dn+H(T~T,) =0 onl. (3.2)
Here «, 0, ¢ are the thermal conductivity, density and exothermicity per unit mass of the reactant,
Aexp (—E|RT) is its fractional rate of disappearance, and T is the local absolute temperature.
V denotes the volume occupied by the reactant, § its surface, 7T, the ambient temperature to
which it is subjected, H is the surface heat transfer coefficient and 7 is directed along the outward
normal to the surface (see figure 1).
If the Biot number, Bi = HRy/k, tends to zero the temperature within ¥ becomes uniform,
i.e. we have the Semenov régime discussed in § 2. If, however, Bi tends to infinity the boundary
condition (3.2) degenerates to T=T, onS, Bi-oo0. (3.3)

We postpone a discussion of the complicated general case (equations (3.1), (3.2)) until § 5, and
consider first the solution of equations (3.1), (3.3), which correspond to the Frank-Kamenetskii
(Dirichlet) régime.

3(c). Construction of an approximate general solution for the Frank-Kamenetskii régime

We consider this problem in the usual Frank-Kamenetskii (1955) approximation

exp (—E/RT) - exp (— E/RT;) €%,

where 0 = E(T-T,)|RT?.
Equations (3.1), (3.3) then become
divgrad0+ye?! =0 inV, (3.4)
=0 ons, (3.5)
where v = qoAEexp (—E/RT,)[kRT? (3.6)
has the dimensions of (length)~2. For the highly symmetric class A geometries, (3.4) and (3.5)
may be written in the simple reduced form
g:g+%g—z+§(ao) e? =0, (3.7)
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0),-1=0, (3.8)
do
— =0, 3.9
W, (3.9)

where (3.9) corresponds to a maximal central temperature due to the symmetry, jis a dimension-
less number denoting the shape (j = 0, 1, 2 for the slab, cylinder and sphere) and ¢ is the well-
known Frank-Kamenetskii parameter based on the radius or half-width a,:

5(ay) = yai. (3.10)

The variable p is usually interpreted as r/a,, where r is the distance from the central plane, axis
or centre respectively. Below we require a more general definition and we shall use the following:
p(P) is the distance of a general point P from the centre of the body O, divided by the

distance from the centre O to the surface S in the direction O P (see figure 1).

3(c) (). A unified solution for class A geometries

We first consider a formal parametric solution of (3.7) to (3.9). This is generated by means of
the substitution of 0,—0 = 2In X(p) (3.11)

into (3.7), where 6, denotes 6(p = 0), the dimensionless temperature excess at the origin O.
A comparison of the coeflicients of p? gives

X(p) = X bn(yp%)", (3.12)
o
where y is a parameter which must satisfy the boundary condition (3.8):
0, = 2In X, (3.13)
Xi=X(p=1)= Y by~ (3.14)
n=0
4 is given by 0(ay) = 12.3(j+1) yX73% (3.15)

and the coefficients b4(j) are to be found from the recurrence relation
n
(41) (204 +1) by = 3 (1=5) (45— 2043 =) bypaby (1>1);  (3.16)
s=0

using b, = b; = 1. Equations (3.11) to (3.16) constitute a unified statement of the well-known
solutions (Frank-Kamenetskii 1955; Chambré 1952; Chandrasekhar & Wares 1949; Boddington &
Gray 1970; Merzhanov & Dubovitskii 1958) for class A geometries in terms of the parameter y.
It should be noted that the leading coeflicients 4,, 4, are independent of j (and thus of shape)
and that subsequent coeflicients bs, b3, ..., are small, being zero for the infinite cylinder (j = 1).
Thus . . .
b= by =13 b=l g UZDE-D
co 2(j+3)° 6(j+3) (+5)
These results have the consequence that the relation 6 = 6(p, 6, j) generated by (3.11) to (3.16)
depends very feebly on shape notwithstanding the three very different and extreme geometries
under consideration. In fact, manipulating (3.11) to (3.16), we may write
i+ 1
0= 03(1-p) (13 (FE5) pta+ 00, (3.17)
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where the coefficient (j+1)/2(j + 3) takes the values 0.167, 0.250 and 0.300 for class A geometries.
Since p20, < 1in all cases of interest, (3.17) illustrates well the feeble dependence of 6 = 6(6,, p)
on shape.

3 (¢) (i1). The general solution for arbitrary geometries

Since an exact analytical solution of the general problem is not forthcoming we are compelled
to seek a satisfactory approximation. Guided by our unified solution of the problem for class A
geometries, we assume that equations (3.11) to (3.14) and (3.16) constitute an approximate
solution 6 = 0(6,, p, j) of equations (3.4) and (3.5) for a body of any shapet possessing a centre of
symmetry.} This plausible hypothesis demands justification a posteriori. In order to use it we
must define the shape parameter j for a general body in a suitable manner. A satisfactory defini-
tion must involve a complete specification of the body (not merely the few principal dimensions
specified in earlier approaches). This requirement is met by defining the surface S in the form

r=a(@,¢) onl, (3.18)

where (r, ©, ¢) are the usual spherical-polar coordinates with the origin at the body centre O,
and a (0, ¢) is a specified function for a given geometry. The definition of j must be such that
J depends continuously on the parameters of the function a (0, ¢), must give the correct results
for the class A geometries and be applicable to a general shape (in particular, must treat all
directions (6, ¢) equivalently). Once these rather strong restrictions have been satisfied, any
residual arbitrariness in the definition should not be important since, because the solutions
0 = 6(0,,p,j) depend feebly on the shape parameter j for the three very extreme geometries
of class A, we may reasonably expect that this will also be true of the intermediate cases. A con-
venient definition meeting all our stipulations is given by

J=3x-1

x = R§Rs?,

11 dw
R 4am)) &

Here Rj2is the value of a=%(0, @) averaged § over 4 steradians. Since Ry and R, are defined and

(3.19)

finite for all bodies with a finite dimension we see that j is defined and finite for all bodies. ||
For convex bodies the shape parameter defined by (3.19) has values lying between 0 (the infinite
slab) and 4.187 (the regular tetrahedron).

The length R,, which we may conveniently refer to as the mean radius, proves to be an excellent
first approximation to the Frank-Kamenetskii equivalent sphere radius, Ryg, and arises naturally
from a consideration of the dependence of 6, on y. In fact our solution (3.11), (3.12) has the form
0 = 0(0y, p,j) and is as yet incomplete, in that it remains to relate 6, to the physical parameter 7.
It should be noted that (8.15), which involves 8(a,), is not invoked in our solution, nor can it
be, since g, is not defined for bodies other than class A. Here lies the principal obstacle to using

1 Subsequently we find we must restrict our treatment to starshaped bodies (those having the property that
a ray in any direction through the centre meets the surface only once).

+ Le. a point at which the symmetry of the body compels zero temperature gradient in three non-coplanar
directions, so that grad 6 = 0 and 0 is stationary. This point may be an inversion centre or the unique point
defined by the intersection of planes and/or axes of symmetry.

§ The factor 1/47 in the definition of R, 2 serves to normalize the integral to produce a mean value for a~2,
thus ensuring that for a sphere of radius a, we have Ry = a,.

|| In order that a be a single valued function of ® and ¢, we must in fact restrict our attention to bodies which
are stellate, centre O.
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SPONTANEOUS IGNITION 475

a generalized Frank-Kamenetskii parameter . For the class A geometries there is an ‘obvious’
dimension @, that may be combined with y to give an ‘obvious’ dimensionless parameter,
0(a,) = yad. For other geometries the choice of 4, is arbitrary, so that (3.15) cannot be generalized
directly. This difficulty is resolved automatically below in deriving the relation y(6,).

We ‘normalize’ our solution 6 = 6(0,,p,j) by substituting it in the basic equation (3.4).
(Equations (3.11) and (8.13) automatically satisfy the boundary condition (3.5).) The sub-
stitution is conveniently effected at the body centre O, giving

yeh — yX? = —divgrad 6 = — lim |— | [ grad 6.ds" 3.20
Y ool V1 s

where V! is the volume enclosed by a control surface $! surrounding the origin. Letting this
surface be a spheret of radius 7,(r, — 0) and noting that

1 880
grad 6.dS! = a@pdw’

im () = —4y ("), (from (3.11) and (3.12))

7’“1_)0 5) = ~W\,), (from (. nd (3.
and Vi = &3,
we find that (3.20) reduces to

vX2 =12y —l-ff a?dw = 12yRy?, (3.21a)
41T S

or O(R,) = yR} = 12X7%y(X,,J). (3.210)

Since X; equals exp (36,) and y(X,, /) is known from (3.14), we see that (3.214) relates y and 6,
(without assigning special prominence to any single dimension). Similarly, (3.215) relates 6,
to a § based on a dimension R, which arises directly from the heat balance equation and which is
unambiguously and systematically defined. Equation (3.215) is the required generalization of
(3.15), which itself applies only to class A geometries, for which we have R3%2 = 3(j+1) a3? (see
appendix 2 (b)). Our approximate general solution, given by the set of equations (3.11) to (3.14),
(3.16), (3.19) and (3.21), is now complete. By omitting mere definitions we can summarize it
as follows:

0 = 0, —21n [,éob“(j) (ypz)"],

o — X, = Zobn ()ym, general solution. (3.22)
ne

O(Ry) = 12X7%y(X,,5).

3 (¢) (ii1). Merits and limitations of the general solution

Although it is not possible to conduct a thorough analysis of the precision of (3.22) for arbitrary
shapes, some consideration of its advantages and disadvantages is appropriate:

(@) It is an extremely simple, compact general solution in terms of the parameter y. When
values of y and j are assigned, §(R,) and 6(p) are readily calculated.

(b) The geometric properties of shape and scale are embodied in only two parameters j and
R, these being universally defined.

1 Because our solution (6, p, j) is not exact for arbitrary geometry, the result of our normalization depends

slightly on the shape of the control surface. The choice of the sphere is not only plausible and convenient but
also generates the most accurate results.

34 Vol. 270. A.
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(¢) The solution (3.22) is an exact formal solution for the three very disparate geometries
infinite slab, infinite cylinder and sphere, its simple form notwithstanding.

(d) The solution involves only one reduced coordinate p = r/a(@, ¢). This fact greatly (and
indeed crucially) simplifies the algebra and implies that the isotherms, 6 = const., correspond
to p = const. or to 7 = const. x a(0, ¢), i.e. are geometrically similar to the outer surface. While
this is an acceptable first approximation in general (it is exact for class A), it implies in turn that
surfaces with discontinuities have discontinuous isotherms, whereas our elliptical basic equation
does not admit the propagation of such discontinuities. This is not a grave deficiency since we
are principally concerned not with the detailed local behaviour of the temperature but with the
overall property of criticality. The pathological behaviour at the origin (in particular) of the
temperature distribution (3.22) corresponding to a body with surface discontinuities is dis-
turbing, but does not demand special attention in our analysis.

(¢) The solution automatically ensures that the maximal temperature is achieved at the body
centre since there 00/0r — 0 for all directions (0, ¢).

(f) In general the equation of local heat balance is only satisfied exactly at the centre O. To
consider this we note that (3.22) is the formal solution of the ordinary differential equation

%Z-l-%gg-l- YJ+1)6(Ry)e? =0; inV, (3.23)

subject to the boundary conditions
0=0 at p=1 (Le.7r=2a(0,¢), ie. ons), (3.24)
and df/dp =0 at p=0. (3.25)

Although (3.24) and (3.25) are the correct boundary conditions, (3.23) is not the correct heat
balance equation (see (3.4)). However, for the class A geometries (3.23) reduces identically to
(3.7) even though great extremes of shape are involved. Since, additionally, the correct heat
balance equation (3.4) is satisfied for all shapes at the centre (equation (3.21)), we expect local
heat imbalance to be small.

(g) A comparison of the critical conditions generated by our approximate solution and of
those found by exact computation is given in §4 (a). The close agreement for a wide range of
geometries is encouraging and ultimately constitutes a justification of the use of our fundamental
hypothesis. Additional support is lent by the fact that our results for an even wider range of
geometries lie within rigorously derived bounds (see § 6).

(k) There are difficulties associated with the convergence of the infinite series appearing in
(3.22). These are circumvented in the next section by using finite reversions of the series.

4. NATURE OF THE GENERAL SOLUTION FOR FRANK-KAMENETSKII BOUNDARY
CONDITIONS: CRITICAL CONDITIONS FOR EXPLOSION IN BODIES
OF ARBITRARY SHAPE

In this section we examine the major features of our approximate general solution (3.22) for
the internal temperature distribution, find the critical conditions for explosion by demonstrating
that no steady-state solution exists if §(R,) exceeds a certain value (which depends feebly upon
shape), and thus derive a simple expression for the radius of the equivalent Frank-Kamenetskii
sphere, which may be compared with the corresponding Semenov radius.
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4 (a). Dependence of temperature profile on shape and thermochemical parameters :
critical conditions for explosion

The general parametric solution (3.22) may be used directly to generate solutions (the same in
all directions) of the form 0 = 0(p,8(Ry), j)-

To this end the infinite summations in (3.22) may be truncated after n = 5 with very small
resultant error. A very simple and remarkably accurate alternative is to use the second-order
reversion: yp? = (X—1)[1—b,(X—1)]. The shapes of the profiles for all shape parameters j
are essentially the same—they are roughly parabolic with a maximum at the centre and zero
at the edge. Ifj > 1 then an inflexion in the profile is observed near the surface (p = 1) if §(R,) is
sufficiently close to its critical value 8., (R,). The profiles are well illustrated by the casesj = 0, 1, 2
which have been discussed in detail by Boddington & Gray (1970).

The variation of the self-heating effect with scale or with ambient temperature may con-
veniently be represented by the relation 6y(6[R,]), given parametrically by (3.22). When &(R,)
is small we have 6, — 0 and

dé(R,)
dfy 50

-6 for all geometries.

As ¢ increases above zero the gradient dd/df, diminishes steadily so that & eventually attains
a maximum value J,.(j).7 This maximum represents the critical régime, i.e. corresponds to
the greatest value of ¢ for which a steady state is possible. The gradient of §(6,) is, from (3.22),

given by dlné 1dlny _1 i1
a0, ~zdlnx, (4.1)
e e dinX;, _ 1dg| |
so that at criticality we have} Ty = 4dp b (4.2)
or 3 (2n—1) by = 1. (4.3)
n=1

The critical values of § and ¢, are to be found by substituting the critical value of ¥ given by
(4.3) into (3.22). Although this may be done precisely, the results are greatly simplified and
very little error is introduced (see below) by making use of the second-order reversion of (3.14):

y=(X;—1)[1—-by(X;—1)]. (4.4)
With this approximation 6(6,) has the simple form
O(R,y) = 12X72(X, — 1) [1=5,(j) (X, —1)]; X, = el (4.5)
(%‘20 = 6X7? [———-—(j +].7J)r; 4X1]. (4.6)
Thus the following very simple relations hold at criticality:
Xier = 2(J+7), (4.7)
Oo,cr = 2 [3(7+7)], (4.8)

+ When the argument of ¢ is not made explicit it is to be understood to be Ry, i.e. § = yRZ.
1 This result gives —d0/dp|,., = 2 at criticality for all directions (0, ¢) and for all shapes, thus generalizing
a result due to Enig (1966).

34-2
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Yor =32(J+3) U+7), (4.9)
Oer(Ro) = 3F(j), (4.10)
F(5) = (2 +6)[(j+7), (4.11)
8¢p = 6(1 — 1), (4.12)

The critical values of the parameters depend solely on the shape parameter j.
The form of 6(6,) given by (4.5) is illustrated in figure 2. The region to the right of the critical

— locus (4.12) corresponds to unstable steady-state solutions. The stable steady-state solutions of
§ S physical interest lie to the left of the critical locus. It is clear that the dependence of the sub-
OH critical behaviour on shape is slight. 7
e E The error incurred by replacing (3.14) by its second-order reversion (4.4) is small. The greatest
= O
TS _
=w
A B -~
— 7
Is i -
026
$<0 J=4.187
oz %
=% . 3
I§ 3 /
o=~ 2
. /
& 7
/
2= /
/
/
/
/
-4 7/ 0
o/
/
/
/
/ | | |
y 0 1 2 3
T by
J]

A

p— Ficure 2. Variation of the generalized Frank-Kamenetskii parameter 0(R,) = vR2 with the reduced central
< temperature excess 0, under Frank-Kamenetskii boundary conditions, according to (4.5). The curves
> > shown cover the entire range of convex geometries (0 < j < 4.187). A4 is the low ¢ asymptote for all
O =~ geometries: 0(R,) = 60,. B is the critical locus given by (4.12). The region between 4 and B corresponds
to stable solutions. 'T'o compare this figure with the classical results for slab, cylinder and sphere note that
= ble soluti T p his fig ith the classical lts for slab, cylind d sph h
— .
8ag) = [(j+1)/3] (Ry).
= O
=i TaBLE 2. COMPARISON OF 0, .. AND J,,(@;) DERIVED FROM THE CRITICAL
5‘2 CRITERION (4.7) AND THE EXACT VALUES FOR CLASS A GEOMETRIES
=0
E : 00, cr 6cl' (aO)
([ONTH ~ A ) s A N
85 0 geometry exact (4.8) error (%) exact (4.10) error (%)
Oz o slab 1.187 1.119 -6 0.878 0.857 -2
T oo cylinder 1.387 1.387 0 2 2 0
o= sphere 1.61 1.622 +3 3.322 3.333 +3
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error for régimes of physical interest occurs at criticality. In table 2 we compare the values of
0, cr and d.,(R,) generated by (3.22) and (4.3) with the values generated by (4.8) and (4.10)
for the class A geometries. The results of the former are exact in the Frank-Kamenetskii approxi-
mation (RT,/E — 0). In view of the small errors involved we shall use (4.4) in all further dis-
cussion, with the result that our expressions have especially simple forms deriving from (4.7)
to (4.11).

Hl

)
A

/
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—
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e
)
=0
=w
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TRANSACTIONS
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<
2} |
S
Sk oo b
A | | g l . | |
kO 0 T 2 3
ZO J
=u

Figure 3. Comparison of criticality criteria for various geometries under Frank-Kamenetskii boundary con-
ditions. O, Exact values of §0,,(R,) known for the geometries indicated schematically at the bottom; y
present result, F(j) (equation 4.10); - - - -, the empirical correlation (2j+7)/(j+8). The labelled broken
lines serve to connect the isolated data points generated by earlier approaches. P,, P,, P, correspond to
Wake & Walker’s Poisson equivalent slab, cylinder and sphere methods, respectively (equation 7.14). H
denotes a criterion based on the Helmholtz length, A % (equation 6.2): H, represents Khudyaev’s upper
bound or the generalized Bowes and Thomas estimate (6.4); H,, H;, H, represent the estimates generated
by the quasistationary approach (§7 (b)) when adjusted to give correct results for the oo slab, 0o cylinder and
sphere respectively (equation 7.12).
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TABLE 3. COMPARISON OF F(j) FROM (4.11) AND EXACTLY KNOWNT

VALUES FOR CERTAIN GEOMETRIES
[F(7) — P (D] Fex(S)
(%)

geomelry J F(j) F (Dt
oo slab 0 0.857 0.878 —24
oo circular cylinder 1 1 1 0
o0 square rod 1.444 1.051 1.039 +1.2
sphere 2 1.111 1.107 +0.3
equicylinderf 2.729 1.177 1.145+ 0.01 +2.8
cubel 3.275 1.221 1.198 +0.01 +1.9

T -F;’;-((J) = %BOI'(RO)
I Corrected result from Parks’s calculation (1961).

In order to consider the combined error resulting first from the use of our postulated approxi-
mate general solution (3.22) and secondly from the adoption of the simplifying approximation
(4.4), we compare the factor F(j) given by (4.11) and the quantity Fex(j) which must be used
in (4.10) in order to give the precise results calculated numerically for certain shapes. (Because
of the dearth of precise results we have solved the basic equations (3.4), (3.5) numerically for
the conveniently simple case of the infinite rod of square cross-section.) Table 3 compares F(J)
and Fex(j) for a rather wide range of geometries and figure 3 illustrates the comparison graph-
ically. It is seen that the error incurred in using F(j) to calculate critical conditions is small.
Denoting (F— Fex)|Fex by (AF|F) and assuming this quantity to be small we find the following
errors in other critical quantities:

(A68/8) ¢y = (AY[7)er = AF[F ~ 1%,
(AR[Ry) ¢y = FAF[F ~ § %,
AT, .. = (RT} JE) (AF|F) ~ 0.1K,

a, cr
where the numerical values correspond to a 1%, error in F, the observed order of magnitude.
We see that our approximate solution may be considered sufficiently precise for practical applica-
tion, especially in view of other uncertainties discussed in appendix 3.

In order to use our general critical conditions for a particular body it is necessary that Rg
and R, be evaluated. The former, which equals 3V/S, presents no difficulty, since 7 and § may
be found from mensuration tables or by straightforward quadrature (see appendix 2 (a)). For
a wide range of interesting geometries evaluation of the mean radius R, is simple, though often
extremely tedious. For convenience we give in appendix 2 (b) useful formulae for its evaluation
for some rather general shapes (e.g. bodies of rotation, polyhedra, and right cylinders of arbitrary
cross-section), and for the evaluation of the contribution to Ry? of spherical, cylindrical and
planar surfaces. This appendix also sets out simple formulae for R, for a wide range of particular
cases. An examination of these formulae shows that in essence Rj2? has the nature of the mean
value of the half-widths in three orthogonal directions, each raised to the power — 2. Thus, for
the ellipsoid with semi-axes 4, b, ¢, we have

1 ~1 _1+ 1 " 1
R 3|2 B2 2|
4 (b). The radius of the equivalent sphere under Frank-Kamenetskii boundary conditions

We base our evaluation of equivalent sphere radii on the relation
8cr(R0) = (Vth))er = 3F(j), (4°10)
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_2j+6 _2(3y+4+2
where F= T 3(X+2) (4.13)
and X =30+1) = RERS™ (4.14)

In particular we have for the case of the sphere

[YCrR(Z)]SDh = [YCrag]SDh = 3F(2) = “50"' (4'15)

Now g spn will be the radius Ry of the equivalent sphere for Bi = co when, by definition, the
body and the sphere have a common composition and critical explosion temperature, i.e. a
common value of y.,. Hence, equating yspn given by (4.15) and y given by (4.10), we find that
Rpx is given by

Rig 5( x+2 _19(j+7 _ 10 416
R2 T3 3xy+2 ) 2]+ 6 Y (4.16)
or RFK = (].0/9F)%R0. (4.17)

Hence the mean radius R, is, in a good first approximation, the radius of the equivalent sphere
when Bi = oo, the error entailed being especially small for compact bodies (y ~ 1, ~ 2) since

(10/9F)% = 1-(j-2) + O([j - 2]*)

= 1= & (x - 1)+ O([x~117.
For convex bodies we have 0.930 < (10/9F)% < 1.138,
where the least value corresponds to the regular tetrahedron and the greatest to the infinite
slab. Thus the (inverse square) mean radius constitutes a readily calculated rough estimate of
the Frank-Kamenetskii equivalent sphere radius. It leads to errors in 7} ., for convex bodies

not greater than ca. RT%:[4E (typically less than 5 K). When greater precision is demanded the
exact result (4.17) may be used (once Rg has been evaluated).

4 (b) (i). Comparison with Semenov equivalent sphere radii

A convenient parameter with which to gauge the dependence of equivalent sphere radii on
the Biot number is the square of the ratio of the radii under the two extreme conditions, Bi = 0

d Bi = oo: _
mem=e = (Rux/Rs)* = (Ruxc/Ro)* (RERS?).
Using (4.14) and (4.16) we may write

Rex\* _ 5(x+2 B (D) (j+T)
o= () 36w (), (419

or P—1 = H(-2) [1+&0-2][1+3(-2)]7
=5(/—2)[1-15:(U—2) +O([j - 2]*)]. (4.19)

We conclude that the equivalent sphere radii differ under the two extreme physical conditions
(unless j = 2). The departure of @ from unity is not large for convex bodies: @ takes its least
value 3% = 0.432 for the infinite slab and its greatest value 1.494 for the regular tetrahedron.
Rypg exceeds Rg for compact but angular bodies (e.g. the cube) but is less than Ry for bodies
having one principal dimension greatly different to the other two (e.g. thin disks and long rods).
The values of @ and of other shape dependent parameters for some important geometries are
set out in table 4.
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TABLE 4. SOME IMPORTANT SHAPE-DEPENDENT DIMENSIONLESS PARAMETERS
FOR CERTAIN SIMPLE GEOMETRIES

PARAMETER X J IRt PR;? E(j) D o, r
definition (3.19) (3.19) (2.1) (3.19) (4.11) (4.18) (4.8)
GEOMETRY
oo slab, [ = % thickness 0.3333 O 0.3333 0.3333 0.857 0.432 1.187
thin circular disk, % thickness /, 0.4790 0.4370  0.4000 0.3340 0.9243 0.5758  1.241
radius 10/
oo cylinder, [ = radius 0.6667 1 0.6667 0.6667 1.0000 0.7411 1.386
long circular cylinder, length 10/, 0.8061  1.418 0.7333 0.6671 1.050 0.853 1.489
radius /
infinite square rod, side = 2/ 0.814 1.443 0.6667 0.5455 1.051 0.860 1.492
sphere, { = radius 1.0000 2 1.0000 1.0000 1.111 1.000 1.622
equicylinder, / = radius = § ht. 1.243 2.728 1.0000 0.8047 1.178 1.173 1.778
cube, side = 2/ 1.427 3.280 1.0000 0.7009 1.222 1.298 1.888
regular tetrahedron, side = 2/ 1.729 4.187 2.449 3.4702 1.284 1.494 2.058

5. CRITICALITY WHEN THE SURFACE HEAT TRANSFER
COEFFICIENT IS ARBITRARY

The results of §§ 3 and 4 constitute a fairly precise general solution of the criticality problem
for arbitrary shapes in the Frank-Kamenetskii limit (B¢ - o), and thus complement the well-
known general solution of the problem for the Semenov limit (Bi — 0). There remains the
markedly more difficult task of solving the general problem (3.1), (3.2) when the Biot number
is arbitrary. This is of the utmost practical importance since frequently the situation is such that
neither of the two extremes already discussed can constitute a good description of the actual
boundary conditions. The treatment in §3 of the Frank-Kamenetskii limit depended for its
success upon our ability to write down an approximate general solution of the heat balance
equation satisfying the boundary conditions, and thus upon the very simple form of the condition
0 = 0 on S. In the general case we require to solve (3.4) subject to

dOj/dn+h0 =0 onS, h= Hlk,
or do/dp+hl(O,¢) =0 at p=1

(see figure 1), and we see that this boundary condition cannot be satisfied by 6 = 6(p), i.e. that
the above approach cannot be extended to the case of arbitrary B.
Below we adopt an empirical approach to the solution of the general problem.

5(a). Variation of 6o, (R,) with Biot number

When the Biot number is arbitrary we see that the criticality problem becomes extremely
intractable. In the absence of a more precise treatment we give below an empirical formula from
which general critical conditions may be calculated and, in partial justification, demonstrate
that a diversity of its particular forms give the same results as those derived above and elsewhere.
Let us consider the suitability of the equation

1 1 e 1
= — [’.,
SolRe) I 1B 6.1
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as a repesentation of the condition for criticality for bodies of arbitrary shape and arbitrary B:
(1) The Frank-Kamenetskii limit. As (Bi)~'— 0 equation (5.1) generates the relation
0or(Ry) = 8F(j) derived above for a body of arbitrary shape and shown to be correct to within
a few parts per cent.
(i1) The Semenov limit. As Bi - 0 equation (5.1) generates the relation

¢ er(Ro) _ eKYVerV _ . [qO'AE V

Gl B~ HS HSRTE P (”E/RE‘)]

= ewcr =1,
T

C

i.e. reduces to Semenov’s classical result for arbitrary shape (see §2) on using the definitions of
R,, j and Bi. To the extent that the Frank-Kamenetskii exponential approximation is acceptable
this is an exact result.

(iii) Class A geometries, intermediate Biot numbers. For the infinite slab, infinite cylinder and sphere

Rj = 34§[(j+1), Rg=3a/(j+1)

hold, so that (5.1) may be written

the geometric relations

1 1

Ser(ay) (j+1)F(j)+(jil)(HT%)_1.

This resultis the same as that derived previously by Thomas (1960) and by Barzykin & Merzhanov
(1958) for all Biot numbers, except that it involves the approximate expression

(j+1) F(j) = 0.857,2,3.33

for the exact values &,,(a,) = 0.878, 2, 3.32. With this reservation we may say that (5.1) includes
these earlier results for the simple geometries of class A.

It is thus seen that (5.1) gives accurate critical conditions both for all geometries at extremes
of the Biot number, and at all Biot numbers for the disparate geometries: slab, cylinder and
sphere. We shall further show (in §6) that (5.1) gives results lying within rigorously derived
upper and lower bounds.

5(b). Equivalent sphere radii for arbitrary Biot number

The forms of the equivalent sphere radii at high and low Biot numbers have already been
considered (see §§ 2 and 4 (4)). In this section we consider the form of Req at intermediate Biot
numbers, basing our treatment on the empirical relation (5.1) which, in virtue of the high
precision of a great diversity of its particular forms, we conjecture is a good approximation
universally.

The concept of equivalence remains vague until a precise specification is given of the conditions
under which different bodies are to be compared. The choice will depend on the problem under
consideration. We consider that a comparison at constant heat transfer coefficient H is generally
appropriate.t Accordingly for our present purposes we define the equivalent sphere generally
as follows:

A sphere and a given body are equivalent if, having a common composition and a
common surface heat transfer coefficient H, they have a common critical ambient
temperature. The sphere radius Req(H) is then the equivalent sphere radius of the
given body at that value of the heat transfer coeflicient.

1 In particular we wish to imply that comparison at constant Bi = ARy is not usually appropriate.

35 Vol. 270. A.
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Req(H) is to be found from the critical condition (5.1). Thus in general we have

3 e

1
7B F By (5:2)
and for a sphere (y = 1) in particular:
3 1 e
s, 5.3
[Vera§lson  Fopn  Bispn (5.3)
If the sphere and the arbitrary body are to be equivalent we must have
7—;\J,cr = E,cr(sphere}, Le. Yer = Ver,sph> (5-4)
_ . Bisph . RS(Sphere) _ Req
and H = Hgn, 1.e. B = R =Ry (5.5)

Combining (5.2) to (5.5), we find

R‘% _ 1 € RS 1 (]
Ry G‘*E(‘R})}/ {F+'BTX}’ (5.6)

and, from the definitions of @ and y,

- () )1

This is the basic equation relating Req to the physical size (through Ryg), to the surface heat
transfer conditions (through Bi), and to the shape (through @(j)) of the given body. It may be
conveniently expressed in the dimensionless form

p(®—P?) = P—1, (5.5)

where P = Req/Rg is a useful reduced measure of Req and £ is a revised Biot number

B = 9Bi[10e = (120_7&) (fg) (5.9)
On solving (5.8) for P we find
P = Req/Rs = [{1 +4B(1 + D)} - 1]/25, (5.10)
so that when the Biot number is small (# < 1)
P=1+[0-1]5-[2(2-1)]5+0(5), (5.11)
and when the Biot number is large

P = JO{1—[JD—1]/2pD+ O(B2)}. (5.12)

We illustrate the form (5.10) of P(f, ®@) in figure 4. It is seen that P varies monotonically from
unity at f = 0 to /@ at f = o0, i.e. that as the heat transfer coefficient H is varied from very
low to very high values the equivalent sphere radius Req varies monotonically from Rg to Ryy.
The ratio Req/Rg may increase or decrease with Biot number depending on the shape of the
body. If the shape factor j is 2 then Req always has the value Rg.t Although P may decrease as
B is increased (if @ < 1, j < 2) it is readily shown from (5.10) that the quantity [0Req/0Rg]; 1, is

1 It should be noted, however, that the constancy of P(f) for the sphere itself is merely the trivial consequence
of adopting the sphere as the reference shape.
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positive for all shapes j, thatis (as we should expect physically), that no matter what the geometry
the equivalent sphere radius increases with the physical size (Rg), under conditions of constant
heat transfer coefficient.

1.223--=====m-smmn
12
J=4.187
- 0
3
1.0] 5
<
oF
— 1
0.861-—-=-=~----~
0.8
0
| | 0657}— ——————————— -
B
Ficure 4. Dependence of the reduced equivalent sphere radius P = R, /Ry upon modified Biot number },
according to (5.10). - - - - - , Value attained in the Frank-Kamenetskii limit, # - co. The curves shown corre-

spond to the entire range of convex geometries. Slab, j = 0; cylinder, j = 1; sphere, j = 2; regular tetra-
hedron, j = 4.187.

6. RIGOROUS BOUNDS ON CRITICAL PARAMETERS

Our derivation of the critical conditions in the Frank-Kamenetskii limit (and for intermediate
values of the Biot number) demands justification a posteriori. This is supplied (table 5 and figure 3)
by a comparison with known exact results, but their paucity precludes a more exhaustive test.
We receive additional confidence in our results for the critical values of y from the fact that they
lie within rather close rigorous bounds that we are able to derive, both for arbitrary Biot number
and for a considerably larger set of geometries than that for which exact numerical results are
available. Our derivation of upper and lower bounds is founded on the important but apparently
little known results of Khudyaev (1963, 1964).

6 (a). Upper bound on 7y,
Khudyaev compares the exact solution of the Poisson-Boltzmann equation
divgradf0+vye? =0 inV, (6.1)
with the solution 6,, corresponding to the least eigenvalue Ay, of the associated Helmholtz equation

divgrad0+10 =0 in 7, (6.2)
35-2
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TaBLE 5. COMPARISON OF UPPER AND LOWER BOUNDS ON THE CRITICAL VALUE OF §(qy) AT
INFINITE B1oT NUMBER (FRANK-K AMENETSKII BOUNDARY CONDITIONS) FOR THOSE GEOMETRIES
FOR WHICH EXACT RESULTS ARE AVAILABLE

J 01/00e Bor(@0) T Ou/0er 8/8.e
geometry (3.19) (6.9) (6.4) (4.10)
oo slab, ¢, = } width 0 0.835 0.878 1.033 0.975
co cylinder, a, = radius 1 0.735 2 1.052 1
oo square rod, side = 2a, 1.444 0.732 1.70 1.067 1.01
sphere, a, = radius 2 0.662 3.32 1.095 1.003
equicylinder, radius = a, 2.728 0.660 2.76 1.087 1.03
cube, side = 24, 3.280 0.651 2.52 1.079 1.019

1 The column §8,,(a,) shows results derived exactly or from numerical solutions.

the boundary condition being in both cases (and always below)

do/dn+ht =0 onS, (6.3)
and is able to demonstrate that no solution 0 of (6.1) can exist if y > e~'A,, i.e. that
Yor € Yu=¢1Ay (6.4)

gives an upper bound on the critical value of y.1 The associated Helmholtz equation (6.2)
is separable for certain geometries (these are tabulated in full by Morse & Feshbach (1953)),
so that, for these, precise expressions for A; can be found—although even with the simplifying
restriction zRg = Bi — oo the calculation is rarely simple. For the geometries which we have
examined (class A, finite circular cylinder, rectangular brick) the precise results (where available)
and the present results (equation (5.1)) lie less than 10 %, below the upper bound yy = e A,
when Bi - oo, and approach the upper bound as Bi — 0 (the Semenov limit). The two extreme
forms for the rectangular brick (2a x 26 x 2¢) illustrate well the general form of the results for yy:

. w1l 1 1 T2
Yu = le/\:l(Bl —> OO) = Z:C— [ﬁ‘}‘z—é‘}‘?] 5 4:_6- = 0.907, (65)
1 1 1 HS
— o1 ; —elpliai] =222
Yu=e12,(Bi—>0) =e /z[a+b-{ c] Te: (6.6)

Equation (6.6) can be rearranged to give
e =1, (6.7)
which shows that ¢, tends to the exact value ¥, in the Semenov limit. (It can indeed be shown
that this result is true generally). In the limit of large Bz (6.5) gives, for the cube of side 2a,,
the result Oor(ay) < 0ulay) = 3m?de = 2.72,
whereas the computed value (Parks 1961) is 2.516 + 0.01 and the present approach would give

the value 2.56.
6 (b). Lower bound on 7y,

A lower bound on 7., can be established by making use of Khudyaev’s sufficient condition
(Khudyaev 1964) for the existence of a solution of (6.1), subject to the general boundary condition
(6.3). By considering the associated Poisson equation

divgrad '+1=0 inV,
dr'/dn+Al’ =0 onlS, }

+ Allied results have been derived subsequently by Keller & Cohen (1967), Fujita (1969) and Joseph & Sparrow
(1970).

(6.8)
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we can demonstrate that a solution of (6.1) exists if ey I'm <1, i.e. that
Yer > V1 = et F1;11> (6’9)

where I'n is the greatest value of I" achieved in (6.8). The associated Poisson equation is soluble
analytically when the Green function for the region V7 is known (Carslaw & Jaeger 1959), and
the corresponding I'y is then readily found. It can be shown that in the limit Bi = ARy — 0 the
lower bound 7y, given by (6.9) approaches the exact value of y,. When Bi is large y1 and vy,
are substantially different (see table 5). Thus for compact bodies (sphere, cube, equicylinder)
we have y; ~ 2y.,/3, the discrepancy (Y. —71) being less for the infinite slab and cylinder.
Unfortunately Iy can only be found analytically for rather simple shapes and, in general,
I'm is not expressed as a simple function of the characteristic dimensions, but rather as an infinite
series. Expressions for our lower bound are thus available at present only for a restricted range
of geometries. In addition to the geometries set out in table 5 we have examinedt the case of
the finite cylinder at infinite Bz. The present critical results all lie some 30 to 60 %, above 1.

By considering our upper and lower bounds together we know that vy, is constrained to lie
within a strip of which the width yy —y1 is ca. 40 %, of the greatest value yy when Bi is large;
becoming zero when Bi is zero. The fact that the present results for the diverse geometries cited
lie within this strip suggests that they will never be seriously in error for more general geometries.

Since Khudyaev’s upper bound 7y, = e™' A, is usually less than a 109, over estimate of 7y,
it could itself be used as a rough estimate for vy, but in general its evaluation is impossible analyti-
cally. However, the labour in applying the present critical results to a particular geometry is
quite trivial by comparison with that involved in finding either yy or y; (even when an analytical
approach is possible).

Comparison with the sphere of the same volume

Gray & Lee (19677 5) have suggested and Wake (1971) has demonstrated rigorously that under
Frank-Kamenetskii boundary conditions no body has a lower critical ambient temperature
than that of the sphere of the same volume. Thus 3.32 (41/37)3% is a lower bound on 7y,,. This
bound is superior to (6.9) for physically compact bodies (Boddington, Gray & Harvey 1971),
but when the shape factor j is less than ca. 1.7 it becomes unusably low.

7. STATUS OF PREVIOUS APPROAGHES

Although a number of approaches to the problem of steady-state criticality have previously
been explored, no account of their validity, precision or interrelation is available. The above
discussion permits an appraisal of earlier results. Because these have sometimes been formulated
diffusely and restrictively, we take the opportunity below of making them explicit and generalized.
The present results are found to be more precise and more convenient to use than the generalized
forms of earlier results.

7(a). Inscription and escription

Gray & Lee (1967) have sought upper and lower bounds on 7y, for complex geometries by
inscribing or escribing the body under consideration with bodies whose 7y, values are known.
They thus adopt the tacit conjecture, first explicitly formulated by Gel’fand (1959), thatif body (2)
completely encloses body (1) then 7; .,(2) < 7, ..(1). This conjecture is not universally valid,

1 Results for a few additional geometries can readily be derived from the work of Wake & Walker (1964) (see

§7(c))-
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since we have shown in § 2 that there are cases for which removal of part of the body decreases
the critical ambient temperature under Semenov boundary conditions. A general analysis of
the conditions under which the conjecture is correct would be very difficult, but we can readily
discuss the interesting case of Frank-Kamenetskii boundary conditions.

Let a body S, entirely enclose a body §; and let the heat balance equation in each be the
Poisson—-Boltzmann equation (6.1), subject to the boundary condition 6 = 0 on S. Further
suppose that the common value of y is y,(S,). Then the solution of (6.1) for body (2), 0,, (which
exists by hypothesis) will serve as the upper function ¢, in Khudyaev’s existence theorem (1963,
1964) and a solution 6, of (6.1) for body (1) exists with y = y,.(S,). We conclude that

Yerl8D) > VexlS),
and we may write YulS) > Vex(52) = VealSs) > 7(Sy), (7.1)

so long as S; is in ¥, and the two bodies are subject to Frank-Kamenetskii’s boundary condition
(6 = 0, Bi — c0). Thus Gray & Lee’s concealed conjecture is valid for Bi — oo (the conditions
underwhich they applied it) but probablynot under other conditions (since the proof given above
breaks down for arbitrary Bi and we have counter-examples at Bi = 0). Inequalities (7.1) may
be used when Bi — oo without restriction on the shapes of §; and §,, and in particular when one
or both have concavities or even internal cavities (so long as ¢ = 0 on the internal surfaces).
The inequalities also show how known bounds may be transferred from one body to another,
and thus supplement our earlier discussion (§ 6) of upper and lower bounds.

The physical significance of (7.1) is that removal of material from a body of exothermic re-
actant always increases its critical ambient temperature 7, , if all the old and new surfaces are
held at some ambient temperature, 7;. The reservation is crucial, since it is readily envisaged
that, by creating non-conducting cavities just below the surface of a body, the principal mass is
effectively insulated from its outer surface and 7, ., may be lowered.

As applied by Gray & Lee equation (7.1) did not generate very close upper and lower bounds
because only bodies for which an exact value of y,, was to hand were used as interior and exterior
bodies, and these could not give a ‘close fit’ to the geometry under study. If, however, use is made
of the y,, values generated by our present results (4.10) for a diversity of geometries then (with
their precision) we can estimate close upper and lower bounds for geometries not tabulated in
appendix 2. Clearly such a procedure must be ad foc.

7(b). Frank-Kamenelskii’s quasistationary equivalence

Frank-Kamenetskii (1955) has postulated plausibly that the effective size of a body may be
gauged from the relaxation time of the exponential decay of the internal temperature profile
in the quasistationary state (i.e at very large times) and has used this technique to derive an
expression for the criticality of finite circular cylinders (Bi — o, only), normalizing his result
by choosing a proportionality constant which ensures the known exact result for the infinite
cylinder. Wake & Walker (1964) have independently suggested an identical approach for
(and have applied it to) some further geometries, again only for Frank-Kamenetskii boundary
conditions.} Thomas (1958) has extended this technique for the class A geometries to the case
of arbitrary Biot number and Bowes (1970) has applied it to the rectangular brick, but their

1 This approach should not be confused with a second approach given in the same paper (and discussed in

§7())-
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approach is superior in that the proportionality constant is calculated rather than enforced.}
Thomas & Bowes’s approach can be generalized directly to arbitrary geometry and Biot number
and can thus be compared generally with the present approach and others.

We consider the inert decay of an initial temperature profile, & = 6(¢ = 0) in V, subject to
the usual boundary condition (6.3). This is governed by the equation

o0 K\ ;.
—é—i' = (;{;) div grad 0, . (7.2)
the solution of which is readily shown to be
0= 3 A0; 4Dt (1.3)
i=1

where ¢ is the time, D = «/ov¢, the 6; and A; are the normalized eigenfunctions and eigenvalues
of the associated Helmholtz equation (6.2), and 4; are constant amplitudes for given initial
conditions:
4; -——f 0:0(t = 0)dV. (7.4)
14
The eigenvalues A; satisfy (Mikhlin 1964)
0<A; <Ay <Ay € Aee,y

so that at long times the temperature anywhere in the body obeys

000t = — A, DO; in V,t - oo, inert. (7.5)
Since (7.5) is true everywhere, a similar result is valid for the mean temperature
= 1
df/dt = — A, DO; t-> oo, inert, (7.6)

so that the mean heat loss rate is given by
—divgrad 0 = A,0; ¢-> oo, inert, (7.7)

If we now conjecture, following Thomas (1958), that: (i) equation (7.7) holds not merely in the
quasistationary, inert case but also in the steady-state reactive case and (ii) that the mean value
over the volume of the quantity ¢’ may be satisfactorily approximated by e?, then the volume
average form of the basic steady-state equation (6.1) becomes

A0 =yel or y=2x0e". (7.8)
Clearly this result predicts the critical value:
Yea(BT) = €Ay = yu. (7.9)

Thus the generalized Bowes and Thomas method leads to an estimate of y ., which is precisely the upper bound
given by Khudyaev (1964, see (6.4)). We conclude in particular that for all geometries y, (BT) is
an overestimate of y,, but for many geometries is not in error by more than 109, and becomes
exact in the Semenov limit.

t This apparent logical advantage is however meretricious, since the derivation supposes certain quantities
to be equal when they are known only to be similar in magnitude.
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The critical conditions derived by Frank-Kamenetskii and by Wake & Walker are slightly
different. Again they purport to apply only at infinite Biot number, but are constrained to give
the correct critical value for a certain reference geometry. Thus Wake & Walker’s method
essentially assumes that bodies are equivalent when their Helmholtz lengths A7# are the same,
takes the known critical condition for the reference body and assumes it to be valid for all geometries:

er(ATE) = Yer AT' = 01" = S8 (ag) [a§ AT"] (7.10)
Their method thus gives rise to the critical condition
Yer(WW1) = A, 87, (7.11)
or, if a critical value of & based on some convenient characteristic dimension 4, is quoted,

s (BT |
Beebos WW1) = 7o WW1) 5 = | 5 0. (1.12)

The results derived from (7.11) and (7.12) depend rather feebly on the geometry adopted for
reference. Thus for class A geometries 67°f = [0.356, 0.350, 0.336] for j = [0, 1, 2] and, corre-
spondingly, in the Frank-Kamenetskii limit the generalized results of Wake & Walker and of
Bowes and Thomas are related by

Yer(WW1) [y (BT) = e dtef = 0.967, 0.950, 0.914, for class A reference bodies.

All the above results for criticality based on the Helmholtz lengths A% derived from the
quasistationary régime (i.e. those of Frank-Kamenetskii, Bowes, Thomas, and Wake & Walker)
suffer from two deficiencies at large Biot numbers. First no single proportionality constant will
generate vy, with errors less than 5 9%, over the entire range of convex geometries (see figure 3),
and secondly values of A, are available only for a limited range of geometries.

7(c). Wake & Walker’s equivalence: the Poisson length

An alternative method for gauging an effective size of a body, and one which seems more
plausible than the quasistationary approach, is also due to Wake & Walker (1964). Bodies are
defined to be equivalent when their sizes are such that, when subjected to the same constant
(but arbitrary) internal heat evolution rate, the greatest temperatures achieved in the steady
state are the same. This equivalence may be described more generally as follows. For each body
the associated Poisson equation (6.8) is solved and the greatest value I is found. The bodies
are equivalent when their Poisson lengths I'} are equal, i.e. when I'm = I'®*f, We thus have

ad(eq) = [ a2 I'm, (7.13)

where g, is the characteristic dimension of the reference body the equivalent value of which is
sought, and the quantity in square brackets is a dimensionless constant for the given reference
shape. If we chose the half-width of the class A geometries for reference purposes, the term in
square brackets equals 2(j+ 1) and gy(eq) given by (7.13) is the equivalent half-width (radius)
of the body under consideration. Critical conditions may then be expressed in this approximation
by

Yer a%(eq) = (B\ggf:
o

or Ver(WW2) = {—Q—GTI—)—

}Fg}. (7.14)
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This result gives critical values of y which may entail errors of more than 159, if a range of
geometries is compared with a single reference body. The results are fairly accurate however if
the reference body is chosen to be geometrically very similar to the body under consideration
(see figure 3). Such an ad hoc approach is demanded if high precision is to be secured. The major
drawback, however, is the limited number of geometries for which values of I'n are available.
Itshould be noted that Wake & Walker’s results based on a fixed reference body are proportional
to our lower bounds y; given by (6.9). Thus for the equivalent sphere method we have

Ve (WW2) /71 = 3.32¢/6 = 1.51.

Although Wake & Walker propose the present scheme of equivalence only for very large
Bi = hRg, we may generalize it by defining bodies to be equivalent when their Poisson lengths
(7.13) are equal at some fixed value of z. When this is done the evaluation of I'n becomes longer
(and sometimes impossible analytically) but the values of y,, generated become more precise
as Bi is diminished. In the Semenov limit 2 — 0 we have

I'm = V[hS — A7L;  all geometries, (7.15)

so that bodies are equivalent when they have the same surface to volume ratio, and the vy,
found from the generalized approach become exact no matter what body is chosen as reference.

8. DiscussionN

Our major result is the identification of critical conditions for bodies of arbitrary shape and
arbitrary surface heat transfer coeflicient by means of relatively simple expressions either for the
critical value of a universally defined & (equation (5.1)) or for the ratio of the equivalent sphere
radius and the Semenov radius (equation (5.10)). These equations generate with high precision
known exact results corresponding to a great diversity of particular cases, and are applicable
directly to a body of any shape having a centre of symmetry and such that the entire surface is
‘visible’ from that centre. In the Frank-Kamenetskii (large Biot number) limit the validity of
(5.1), (5.10) has been tested only for convex bodies. We would not assert that these results will
be accurate (in this limit) for bodies with important concavities, although they are asymptotically
exact in the opposite (Semenov) limit.

Rapid calculations of critical conditions for a wide range of geometries may be made by
using (5.1) and (5.10) in conjunction with the information set out in appendix 2 on Rg, R, and
on certain geometry dependent dimensionless numbers.

It was possible to give a plausible but not a rigorous justification of our derivation (§§ 3 to 5)
of the criterion for criticality. Ultimately we justify our derivation on the basis of the precision
of its results. We note first that critical values of y predicted here lie within closely adjacent,
shape-sensitive upper and lower bounds (§6) and, secondly, that in the Frank-Kamenetskii
limit (Bi— oo, figure 3) our criterion is very precise for many widely disparate geometries.
Certainly equations (4.10), (5.1) and (5.10) constitute excellent correlations of all exactly known
results.

In practical applications even exact solutions of our basic steady-state equations (3.1) and
(3.2) must be used with care, for in real situations we must make proper allowance for the effect
of reactant consumption (low exothermicities) and for the discrepancy between the Arrhenius
and Frank-Kamenetskii temperature dependences of reaction rate (low activation energies).

36 Vol. 270. A,
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These difficulties are an inevitable feature of all steady-state theories. We indicate in appendix 3
how they may be surmounted for arbitrary reactant geometry and arbitrary Biot number.

A deficiency of our present approach is that it does not apply to a body without a centre.
On the other hand, the Poisson and Helmholtz lengths are universally defined, so that the other
generalized but not very precise methods do apply to such bodies. The corresponding calculations
are, however, usually so complex that it might be deemed more appropriate to devote the labour
to the exact numerical solution of the Poisson—-Boltzmann equation.

In the absence of a superior procedure, we suggest that our results may be applied to bodies
lacking a centre, but having an axis of symmetry, in the following way. The mean size R, is
evaluated everywhere on the axis (using the results of appendix 2) and that point for which R,
is a maximum is taken as the origin (or point at which the greatest temperature is achieved).
The critical conditions are then evaluated precisely as for a body with a centre.

When applied to a hemisphere of radius ¢, this method gives d,.(a) = 6.27, whereas the
Khudyaev upper bound (6.4) gives du(ay) = 7.42, and our experience of this upper bound
(see table 5) suggest that it will be ca. 99, above the correct critical value, so that we should
estimatefromit d,,(a,) ~ 6.75. A precision of this order willsuffice in certain practical applications.

There remain other more complex geometries (expecially those having more than one bound-
ing surface) to which our approach cannot be extended. Here the best recourse is the Khudyaev
upper bound and often the best route to the evaluation of A, is a variational one. For example,
we can establish in this way that the critical value of dyx for the tore (doughnut) (based on the
radius of the circular cross-section) is less than 6/e = 2.2, irrespective of its other characteristic
dimensions. Unfortunately the application of even this simple method to bodies of low symmetry,
e.g. Krook’s geometry (Dickens 1853), is very tedious.

It has been suggested (Gray & Lee 19674, b; Wake & Walker 1964) that for B: — oo, Wake &
Walker’s results based on the Poisson length and the quasistationary results are equivalent. It
is clear from §§ 6 and 7 and from figure 3 that this is not the case. First there are several quasi-
stationary methods and several reference bodies to choose from when using the Poisson method
of Wake & Walker. Even when a unique quasistationary and a unique Poisson method are
selected for comparison, the y;# values are proportional in one case to the Helmholtz length A7%
and in the other to the Poisson length 'y, When Bi — oo these two quantities exhibit only a very
crude proportionality; even for the class A geometries they are not simply related. In the Semenov
limit Bz — 0, they do indeed become equal, but there the criticality problem for arbitrary shapes
is trivial, since Semenov’s original treatment already constitutes a complete solution (Semenov
1928). When the Biot number is non-zero the Poisson length is greater than the Helmholtz length
for all geometries. To demonstrate this, I" and ¢, given by (6.2), (6.3) and (6.8) are used as the
two functions in Green’s theorem, giving

f [0,V — T'V20,]dV :f 0\, —1]dV = o.

14 14

Since 6, is non-negative, [A,I'— 1] must somewhere become zero, and we may conclude that
Ay I'm must exceed unity, i.e. that at any given value of h and for all bodies V:

Poisson length = I'}, > A7% = Helmholtz length.

We may understand the reason for the failure of Wake & Walker’s method (based on the
Poisson length) to give precise results when Bi — oo for disparate geometries in the following way.
The method considers bodies to be equivalent when the central temperature rises (proportional
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to I'yn) are the same in systems with a temperature independent rate. In real systems (with non-
zero ) some error will be incurred because there will be a significant variation of the internal
temperature. Equally important, however, is the fact that the temperature excess at criticality
depends upon shape through 6, .. = 2In[}(j+7)]. Bodies which are ‘Poisson equivalent’ will
have different critical ambient temperatures if their shape factors differ. This effect is manifested,
for example, in the low accuracy of the Poisson equivalent sphere method when applied to the
slab or to infinite cylinders (see figure 3). Thus in the present approximation Wake & Walker’s

equivalent sphere criterion isf o (WW2) = 3.32R32,
a form which lacks the shape factor F(j) of the superior condition (4.10).

8 (a). Applications

Our present results have a diversity of applications, a few of which we outline below.

8 (a) (i). The effects of scaling and cladding of reactant masses

In general the sequence of critical explosion temperatures of a set of explosive bodies of
arbitrary (differing) shape is not conserved when the set of bodies is subjected either to scaling by
a common factor or to an alteration of the common surface heat transfer coeflicient (as a result
of changes in the thermal environment of the set, for example, changes in the thickness and
thermal conductivity of an enclosing shell of inert material). The sequence of 7;, ., corresponding
to two bodies having different shape factors j may become reversed. This consequence follows
immediately from (5.10) and indicates that care should be exercised in the application of small-
scale modelling to full-scale criticality phenomena.

8 (a) (ii). End corrections for a cylindrical reactant mass

The finite right circular cylinder is a commonly occurring geometry in both gaseous and solid
studies, and it is often supposed that in the Frank-Kamenetskii limit the corresponding critical
condition is 8(a,) = 2 (where g, is the radius), if the cylinder is ‘long’. If Frank-Kamenetskii’s
result (1955) is used the correction to &,,(4,) is of the order a§/l3, where the length is 2/,. Our result
(appendix 2 () (iii)), however, for small g/l is

Sex(a0) = 2[1+§(ao/lo)];

which shows that even for a cylinder four diameters long the correction to be applied is as large
as 6 9. On the other hand, for a cylinder of which the length equals the diameter Frank-
Kamenetskii’s result gives a value (2.98) for &,, which is 8 %, too large (see table 5).

8 () (iii). Calorimetry of subcritical régimes

Our general solution (3.22), or its simpler approximate form (4.5), constitutes a complete
and generally rather precise solution of the problem of relating isothermal heat evolution rates
to observed maximum temperature rises in the steady state, in the spirit of Wake & Walker’s
work (1964) on this problem. In this connexion it may be noted that geometries with high j
values (those which are compact but angular) may give central temperature excesses in the steady-
state which exceed the critical value for the sphere 6, , = 1.607. The greatest value for convex
geometries is for the regular tetrahedron, 6, . = 2.06. It emerges from a study of numerical

t Since from (3.22) we have I, ~ }R2.
36-2
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solutions that although the central temperature excess 0, is given fairly precisely by (4.5) for
subcritical situations (Y < Yer, AGy/0y S 59,) the error in the critical value of 8, may be larger
(ca. 109,). Essentially this is because 6, changes extremely rapidly with vy as criticality is
approached, so that small errors in our approximate relations y(6,), §(6,) inevitably generate
substantial errors in the location of the 6, for which df,/dé = co.

8 (a) (iv). Effective heat transfer coefficient in time-dependent régimes

To give a description of time-dependent régimes often requires a treatment in terms of an
average temperature, for the problem is otherwise extremely intractable. Thomas (1960) and
Barzykin, Gontkovskaya, Merzhanov & Khudyaev (1964) have shown how this may be done
for class A geometries. We may generalize the method on the basis of equation (5.1) by writing
J+1 Ry
3el(y) «°

ot = H7+

This relation defines the effective quantity Hegs which may be used in an averaged description of
the problem, in which the temperature is taken to be uniform and in which the heat loss is
calculated as HetrS(7'—Ta). It is so defined that the equation describing the time dependent
régime under Semenov boundary conditions

o0 = 5
5= —0+ye?, T=

HSt

Voe’

may be applied to the mean temperature excess when Bi is arbitrary and always lead to the correct
critical conditions (5.1), so long as H in the definitions of 7 and ¢ is replaced by Hes;. This technique
enables us to estimate times to explosion for bodies of arbitrary shape following the methods for
example of Gray & Harper (1959) or of Karim (1970).

8 (a) (v). Régimes in which heat evolution is temperature-independent

Although no critical phenomena are associated with such régimes a knowledge of the corre-
sponding temperature distribution within complex geometries is of interest in certain practical
situations, e.g. where the uniform heat evolution rate is due to electrical heating (usually in
effectively infinite cylinders of arbitrary cross-section) or to nuclear fission. The exact description
is, of course, furnished by the solution of the Poisson equation, but an excellent approximation is
to hand for the Dirichlet (Frank-Kamenetskii) problem when, as is frequently the case, the
solution for the region under consideration is not available. Thus the limiting form for the
temperature distribution (3.22) as y tends to zero (¢’ — 1, everywhere) is

0= 0,(1=p%; Oy = I'm = 5RE,

where 0/0, is to be interpreted as (1T'—T1,)/(T, —T3), and 6,]y as (T, —T13)/Q; Q being the heat
evolution rate per unit volume. This approximate temperature distribution yields maximum
temperature excesses not more than 5 9, in error for convex geometries, and may remain reason-
ably accurate for star-shaped geometries. In conjunction with our tabulated expressions for the
mean size R, it may be applied with facility to a wide range of geometries.

8(b). Conclusions

Of the several methods available for estimating the critical sizes of convex bodies with a centre,
the present one (i) has the best accuracy everywhere over a full range of shapes, (ii) is unique
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in its universal applicability, and (iii) is unique in requiring no more than quadrature (for the
evaluation of ¥, § and R,) for application to any geometry and any Biot number.

Were it deemed necessary, the precision of our present results in the Frank-Kamenetskii
limit could be improved forj < 1 by using the exact critical condition (4.3) instead of the approxi-
mation (4.7). Our F(j) values would then be exact for both the infinite slab and the infinite
circular cylinder. It can also be seen from figure 3 that a good empirical correlation of the sparse
exact data is given by F(j) — (2/+ 7)/(j+ 8); the errors in §,, on this basis are now never greater
than 1 9, over the entire range of shapes considered.

We thank Dr G. G. Wake for discussion and the United Kingdom Atomic Energy Authority
for support. This paperis published by permission of the Director of U.K.A.E.A., but the authors
alone are responsible for its contents.

APPENDIX 1. SYMBOLS AND NOMENCLATURE

Frequently occurring symbols, their significance and their dimensions are listed below. Other
symbols have only local relevance. It should be noted that in appendix 2 the symbols have only
the geometric meanings there conferred.

Symbol and significance dimensions
a = a(0, ¢), distance from body centre to surface in the m
direction (6, ¢)
a, a characteristic dimension, value of @ in a special direction m
A effective first-order pre-exponential (frequency) factor s71

bn(y) shape dependent coeflicients defined by (3.16) and giving —
the Frank-Kamenetskii temperature profiles (3.22)
Bi = hRy = 3HV[kS the Biot number —_—

¢ specific heat of reactant mixture Jkg 1K1
D = k[oc, thermal diffusivity of reactant mixture m?2s—1

E Arrhenius activation energy Jmol—?
F=(2/+6)/(j+7) ~ %04, (Ry, Bi = c0), a shape factor (see § 4(a)) —

h = H|k, a measure of the surface heat transfer coefficient m™!

H the surface heat transfer coefficient Wm-2K-1

J = 3y —1, a shape factor reducing to 0, 1, 2 for co slab, —
oo cylinder and sphere, respectively (see (3.19))

| = acos ¥, distance from body centre to tangent plane m
n coordinate directed along outward normal to surface m
¢ exothermicity per unit mass of reactant mixture Jkgt
r radius vector from origin (body centre) to arbitrary point m
r = |r|, distance from origin m
Ry radius of equivalent sphere under specified boundary m
conditions (for definition see §5 (b))
Ry = Reo(Bi — 0) = 3V/S, the Semenov radius (see § 2) m
Ryx = Req(Bi - ), the Frank-Kamenetskii radius (see § 4 ()) m

R the universal gas constant Jmol1K-1
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Symbol and significance dimensions

R, ~ Ryg, a mean radius, Ry? = Zl;ffa—z dw m
S$ the reactant surface (or its total area) m?
dS an element of the surface m?
¢ time S
tm = (DA,)™, the quasistationary thermal relaxation time S
T absolute temperature K
T, ambient temperature K
V the reactant bulk (or its total volume) m?
dV an element of volume m?

X = exp[(0,—0)], a measure of temperature (see §3(¢)) —

Xy = exp[30,] -

y the parameter of the generalized Frank-Kamenetskii —
solutions (3.22); see also (3.12)

£ = 9Bi[10e = (27/10e) (HV/«S), a modified Biot number —

v = qoEdexp (— E/RT,)/cRT?%, a measure of heat evolution rate m~—2
v1 = e 1171, alower bound on vy, (see §6(5)) m~2
vu = €712, an upper bound on vy, (see § 6(a)) m™—2
I" the solution of the Poisson equation (6.8) m?
I'yy the maximum value of I"in V; (Poisson length)? m?

0(ay) = yai, Frank-Kamenetskii’s dimensionless parameter —
based on the length «,

0 = 0(R,), a generalized form of Frank-Kamenetskii’s ¢ —

¢ = RT,/E, the reduced ambient temperature —

0 = E(T—1T,)|RT?, Frank-Kamenetskii’s reduced temperature —
excess

0, reduced central temperature excess —

Opq = ¢E[/cRT?2, reduced adiabatic temperature rise —

0=Vt ” f 6dV, the spatially averaged temperature excess —

0; the eigenfunctions of the associated Helmholtz equation e
(6.2), (6.3)

0 the colatitude of spherical polar coordinates —

k the thermal conductivity of the reactant mixture WK-1m-!
A; the eigenvalues of the Helmholtz equation (6.2), (6.3) m~2
A, = (Helmbholtz length)~2, the principal (least) eigenvalue of m~2

(6.2), (6.3)

p = r/a(0, ¢), reduced distance from body centre —

P = Rey/Rg, reduced equivalent sphere radius —

o density of reactant mixture kgm—3

¢ the longitude of spherical polar coordinates —

D = (Rpg|Rg)? = 5(j+1) (j+7)/27(j + 3), a measure of the —
variation of Req with B, see § 4 ()

X = R3/R%, a dimensionless shape parameter —
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Symbols and significance dimensions
¥ = ykRy[|3H = 6(Rg)[3Bi, the Semenov criterion (see § 2) —
Yru = yukRg/3H, an upper bound on ¥, —
¥ the angle between radius vector and surface normal —
(see figure 1)
w solid angle; dw = sin ©® dO d¢ —

Subscripts

cr, critical value
eq, equivalent
sph, value pertaining to the sphere

APPENDIX 2. SOME IMPORTANT GEOMETRICAL PROPERTIES
OF CONVEX GEOMETRIES

A 2(a). Evaluation of the Semenov equivalent sphere radius (Rg)

The Semenov equivalent sphere radius Ry is by definition 3V/§ and thus, for many simple
geometries, can be evaluated using tabulated expressions for V' and S. When tabulated results
are not available the results given below may be used. Their most important feature is that Ry
is essentially the harmonic mean of the three principal dimensions of the body.

In general our surface is specified by an expression of the form r = a(@, ¢) where r, , ¢ are
spherical polar coordinates whose origin and orientation are arbitrary, but often conveniently
related to symmetry features of the surface S. The total surface area and total volume are given by

V:%ffzﬁdw =-:l§ffa3sin@d@d¢,
S = ffcﬂsec Ydw =ffa2sec Ysin ©d6O dg,

where ¥ is the angle between the radius vector and the outward surface normal:

13a12 [ 1 dal?
2 —_ —_— —_—
sect ¥ = 1+[aa@] +[asin@a¢] :

The following particular results are useful

(1) Symmetric bodies of rotation, a = a(O) = a(6O + )
3w 3 211
Re :f a?»sin@d@/ff alar+ ﬂ) } sin © dO.
0 0 de
(ii) Polyhedra

Let § consist of a number of plane surfaces S; which are distant by /; from some arbitrary

centre O. Then £,

__1 _—
Rs' = AT

This formula remains valid if some of the surfaces S; are spherical (cylindrical) so long as the
distance from O of all the tangent planes of a given surface S; have the constant value /;. If a
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centre O is found such that /; has the same value / for all surfaces S;, then the simple result Rg =/
emerges.

(ii1) Right cylinders
Let the height be 2/ and let the cross-section have area 4 and perimeter p. Then V = 244,
$ = 2(4+hp) and 3RS — 14 21,

where 7, is 2 mean radius of the cross-section

%ds
rg = 24/p = =

which is seen to be the average value of the distance [, of the tangent plane at the perimeter from
any centre.
If the cross-section is rectangular we have the case of a rectangular brick (2a x 2b x 2¢) and

=1 — 1(}-1 —1 .
we ﬁnd To = 2(17 +¢ ), and Rgl — %[Cl_l"‘b_l'l'(;_l]-

The latter result illustrates well the salient feature of all expressions for Rg: that when some
principal dimension of a body is large by comparison with some orthogonal dimension then the
former has little influence on the value of the Semenov radius.

A 2(b). Evaluation of the effective size or mean radius, R,
Definition

The effective size is defined by the relation

1 1 2m (*r
-2 _ 2y = — —2i
R; —-4_‘Tffa do 4-.T1'f0 foa sin ®dO dg,

where 7 = (0, ¢) defines the outer surface and r, @, ¢ are spherical polar coordinates with
origin at the centre of the body. This relation takes on a simple form for certain rather general
shapes:

A2(b) (). Expressions for symmetric geometries
Bodies of rotation. 0aj0¢ = 0, a(+0) = a(0),

Ry? = f T a-25in ©d6.
0
Right cylinders of arbitrary cross-section, height 2k, cylindrical surface
7 = ay(@p) cosec O, O, = tan~[a,(p)/k]
2
3h2R2 = 1+ % f cos?® O, cosec? Oy de.
0

When the cylinder is infinite (a,/k — 0) this relation reduces to
Ryt = apy?

where the mean cross-sectional radius {a,) is given by

@y ? = 5= a3 dg.
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Bipyramids. Vertices at z = + h, x = y = 0; base z = 0, r = ay(¢); upper surface

r! = h~lcos O +aglsin O
Ret = e i [Tacrdgr o [Tactd
3 = +-T—I'J‘0 ao ¢+;T—7lfo ao ¢.

A2 (b) (i1). Contributions to Ry? of commonly encountered surfaces

Many surfaces of interest are composed wholly or in part of plane, spherical or cylindrical
surfaces, so that it is useful to know their contribution

1
- —2 2
11_4 ffsa de to Rj%
=65

S 0=01

R
RN ey
~~~~~~ 0 i et
@ @© o
C C

Ficure 5. The configuration of planar and polygonal facets. The foot of the perpendicular from the body centre C
to the plane of the facet is point O, where OC = d. (a) an arbitrary contour AB; (4) and (¢) decomposition
of polygonal facet into triangles; (d) and (¢) decomposition of triangles into basic right-angled triangles.

Contribution of a general plane surface. Configuration (see figure 5 (a)). The perpendicular from the
body centre C meets the plane at O, OC = d. O is the origin of the polar coordinates (r, 0)
specifying a boundary curve r(0) along which 6 varies monotonically. The contribution I; of
the area bounded by r = r(0) and its terminal radii, 6 = 0, 0 = 0, is given below.

0,
12 deT, = .92~.91+f (14p%)-1do,
0,

37 Vol. 270. A.
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where p = r/d. The contribution I from a surface bounded by any closed contour may be found by
compounding integrals of the type I; with an appropriate choice of sign.

In particular if the contour is a circle, centre O, radius 7, we have

6d2; = 1—(1+p3)~%;  py = rold.

Contribution of polygonal plane surface. Any plane polygon QRST...ZQ may be decomposed into
the triangles + OQR, + ORS, + OST,..., + OZQ (see figures 5(b) and 5(¢)) and each such
triangle comprises two right-angled triangles, e.g. OQR = OPQ + OPR, where P is the foot
of the perpendicular from O onto QR (see (d) and (¢) of figure 5). Thus I for the polygonal facet
is the algebraic sum of contributions /, from each basic right-angled triangle of the type OPQ
(of which there are 2n for an n-gon facet). With the notation OC = d, OP = ad, PQ = gd,
£ OPQ = 1, we have for the contribution to Ry? of the basic right-angled triangle OPQ:

9 - -1 ﬁ -1 ﬂ OC,[))
12md*1,(OPQ ) = tan (&) —tan {o&J(l +062+ﬁ2)}+(1 +a?) J(1+a2+p%)°

By combining two such expressions we find the integral I, for a rectangle of sides ¢ and &
lying in a plane distant by ¢ from the body centre C and having one of its corners at O:
122 I;(OPQR) = tan~t A+ u,
11(a)
P =@+ 5) J =)
A = 1I(a)/c®\/Za?)
Ya = a+b+c, etc.; I1(a) = abe, etc.

where

(a%+ b?) (¢ + Xa?),

Ficure 6 Ficure 7

Ficure 6. The spherica1 cap configuration. C-body centre, O-sphere centre, A-pole of sphere.
Ficure 7. Cylindrical surface configuration. The body centre C lies on the axis of the cylinder of which S, is
part of the surface.

Contribution of spherical cap. The configuration considered (see figure 6) is a cap of a sphere
centre O, radius 7, pole A with the body centre C lying on the polar axis, OC = ¢. Distance of
pole from O = g, = ¢+, distance from rim to G = a,. The contribution to Rg? is given by

1
I= 1% [a—3(3a% + 72 —c?) ]
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Contribution of a cylindrical surface. For simplicity we consider the configuration shown in figure 7
in which the surface $;, whose contribution we require, is bounded by lines of constant & and
constant ¢. The contribution of ) to Ry?is given by

I, = %‘; [cos 0 — % cos® 05t ag?

A2(b) (iii). Explicit expressions for the mean radius R, for simple geometries

Although the mean radius R, is readily evaluated for many simple geometries from its definition
and from the ancillary results given above, the evaluation usually involves lengthy algebraic
manipulation. We therefore set out below a convenient tabulation of expressions for Rg2 covering
a wide range of the geometries practically encountered.

(1). BobIEs OF ROTATION (about z-axis),
3w
Ry? =f a~?(0)sin @ dO.
0

(1.1). Elliptical section, ¥%a~%+ z% 2 = 1 (ellipsoid of rotation);
3Ry% = 2a"2%+ 72,
(1.11). Circular section—the sphere, a = c,
Ry =a.

(1.2). Rectangular section—the finite right circular cylinder (geometry (2.1) withn = 00), height 24,
radius a, SR=? — d-2 4 2[1 +?d*] 4.

(1.21). Square section—the equicylinder, d = a,

3a2Ry% = 1442 = 2.414.
(1.3). Diamond section—the bicone, radius of base = [, height = 24 (geometry (3.1) withn = o0),
8Re2 = h2+ 202+ 2(hl)~1 = h~2+ 2[1 +1[k] I 2.
(1.31). Bicone with diameter = total height, [ = £,
3I2Ry2 = b.

(1.4). Shapes involving spherical surfaces, see (5)

(2). RIGHT CYLINDERS (PRISMS).

(2.1). Regular n-gon base. Height = 24, radius of basal incircle = a
R3? = (n/3m) a2 [(/n) 2+ (cos? (7w/n) + %) Z+ (1 — %) tan~1 Z],
where t =ald, Z =tan(m/n)[1+sec?(m/n)]"t (n=3,4,5,...).

(2.11). Infinite polygonal cylinder, dja — oo,
1 n . 2w
—2 —_— —_
B 3a? [1+2Tr51n n]
(2.12). Thin polygonal cylinder, a|d — oo,
R2 = 1/342
37-2
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oo 2+72)% T
— 2p—2 (
(2.13). Equicylinder, a = d  3a*Rjy 1+ [ T ”_tan—l T] ,

where 7 = tan (/n).
(2.14). Circular base (n = ) (see (1.2)).
(2.2). Rectangular base. See rectangular brick, (4.1).
(2.8). Diamond base—the biprism or double wedge (perpendicular diagonals of half lengths a, 5).
Height 2d.
JmdRy? = h o (04 2 — 1) tant o (f) 7 {y(1+a2) +y(1+ 49},

where o = a/d, § = bJd, 1 = ﬂ{*/ L+ */(”/" )}{4 14a2) J(1+ %) — 11,
(2.31). Infinite biprism or double wedge, d — co.
8Ry% = a2 4 b2+ (4/m) (ab)~1.

(8). Brpyramips. Height 2A.
(8.1). Regular n-gon base (radius of basal incircle = /),

21 2n
Rg? = 1h24z (1 +—sm—7;-) l—2+-?-);sm( )(/ll)“l

(8.11). Regular octahedron, n = 4, h = /21, length of edges = 2/,

PR32 = % + 2/ = 1.1366.
(4). PoLYHEDRA

(4.1). Rectangular brick (2a x 2b x 2¢),

3T Ry? = Z{a%tan~1 (Pa2)} + P,

where D = ll(a)/{/(Za?),
Y = I1(a),/(Za?) [Za?Za—2 — 1]/ (a® + b?),
and I(a) = abc etc., Z(a) = a+b+cetc.

(4.11). Infinite rectangular rod (¢ — o),
SRy =a"? tan‘1§+ b~%tan™! % + (ab)?

(4.111). Infinite square rod (¢ — oo, a = b),
3a2Rg? = 1+2/m = 1.6366.
(4.12). Square brick (a = ¢, b = ta),

$ma?Ry? = tan—ly +t-2tant (u~1) 4 pt2,
where g = £,/(2+£2).
(4.121). Cube (t = 1), p = /3

3a2Rg2 = 1+2,/(3)/m = 2.1027.

(4.13). Infinite slab (a - 0) 3Ry% —> a2
(4.2). Right cylinders. See (2).
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(4.3). Regular tetrahedron (side 2a, radius of insphere = 4./(%) a)
22R3? = 2+ (8/31) /3 = 3.4702.
(4.4). Regular octahedron (side 2a)
a?Ry? = §+ 2/ = 1.1366.

(5). SHAPES INVOLVING SPHERICAL SURFACES
(5.1). Finite circular cylinder with spherical caps. Cylindrical part: radius ¢, height 24. Caps:
radius r, height /, distance from centre of sphere to centre of cylinder = b = h—,/(r2—¢?)
Ry2 = cosoc[zlé+-£—b] —%«005305[—}5+1%] -}-3(113-1)2[1-— 2(157/21/]2)] ,
where a = tan~! (¢/h) and ¢% = [(2r —1).
(5.11). Finute circular cylinder with hemispherical caps,r = ¢ =1,b =h

(1+2¢)
(1+1¢)2

3c2R32 = 2,/ (1 + %) — 2,

where ¢ = tana = ¢/A.

(5.12). Biconvex lens, h = 0. Radius of curvature 7, aperture 2¢, thickness 2/.
pRee o L1383y +6y72 145y 4592

©UB1H3y T 2y 14y + i

where y = (¢/l) — 1, 2r = [2+ 2y +y?] L.

(5.121). Thick lens (quasi-spherical), ¢ - [,

PRP?=1-y (y<1).
(5.122). Thin lens (y - o0), 3Ry = 1+4y72,

(6). MISCELLANEOUS GEOMETRIES
(6.1). Ellipsoids, x2a=2 +y2b—2+ 2% 2 = 1,
3R2=a2+b"24c2
(6.11). Ellipsoid of revolution, a = b, 3Ry* = 2a2+4¢72,
(6.12). Sphere, a = b = c, Ry =a.
(6.13). Truncated ellipsoid of revolution (ellipsoidal barrel). Height 21, principal radius b,

radius at planes of truncation = a,

2
3R62 =["24 \/_(HT/IZ—)- b2,

(6.14). Infinite ellipsoidal cylinder, ¢ — o,
3Ry2=a"24+b72

APPENDIX 3. VALIDITY OF THE STEADY-STATE APPROXIMATION

The steady-state equation (3.1) does not constitute an exact description of real systems but
it does generate asymptotically correct results for systems of large activation energy E and exo-
thermicity ¢. We indicate below how our results are to be modified when ¢ and E are small or
when ambient temperatures are high. All steady-state approximations are subject to such
modifications.
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A 3(a). Low activation energy

Our derivation of the criticality criterion has as its starting-point not the exact steady-state
heat balance equation (3.1) but (3.4), in which Frank-Kamenetskii’s exponential approximation
has been invoked. In order that this be a good approximation we must have

e=RT,JE<1, (A 3.1)

so that the error involved becomes important if the activation energy is less than ca. 40k] mol-1.
An exact general treatment of the correction to be applied to d,, when e is non-zero is beyond
the present scope, but the following serves as a useful guide.

(a) The numerical results of Parks (1961) for class A geometries and for the cube and equi-
cylinder under conditions of infinite Biot number are all fitted by an expression of the form

Oer(€) = Oer(e = 0) [1+de], (A3.2)
where 4 = 1.07 4+ 0.04, ¢ < 0.05.
(b) Semenov’s classical approach (1928) is valid for an arbitrary temperature dependence of
reaction rate (in the limit of small Biot number). Adopting the Arrhenius form, we obtain the
following expression, which is exact for all geometries,

wcr(e) _ 6\01-(6) _ e
Per(e =0) " Oy (6=0) Om €720, (A 3.3)
where Om = [1— 26— /(1 —4€)]/26% = 1+ 26+ 562+ O(e%).

When ¢ is small we may expand (A 3.3) to give

ﬁcer_(:)—m = 1+e+3e2+0(e), (A 3.4)
In view of the close similarity of (A 3.2) and (A 3.4), which apply to opposite extremes of the
heat transfer coeflicient, we conjecture that (A 3.4) or even (A 3.3) may be used to allow for
the effect of finite activation energy with little resultant error for any Biot number and for any
geometry, at least when e is small. Barzykin ef al. (1964) have shown numerically that this result
is a good approximation for the class A geometries.

A 3(d). Low exothermicity: reactant consumption

Our entire treatment above is concerned with the steady state and thus assumes that reactant
consumption is negligible. In order to observe a near-critical steady state at the ambient temper-
ature T3 it is necessary that there be a time ¢ which is at once much greater than the thermal
relaxation time # of the system and much less than the half life #; of the reaction at 7; .,. Only
then can the reactant temperature be brought from a low value to the neighbourhood of 7, .
without significant reactant consumption. Now for any geometry and any value of the heat
transfer coefficient we know from §§ 6 (¢) and 7 () that

o¢

lth ~ —-, té ~ [A CXP(—E/RT;)]Vl) Yer ~ et /\1:
KAy

where A7? is an effective size (the Helmholtz length, see § 6 (a)) and ¢ is the heat capacity of the
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reactant. Thus a necessary condition for negligible reactant consumption, #n < #;, in a near
critical régime may be written as

()~ 1= - G 5

715_ KAy A\ gE _

) ~el0d< 1,

. E
1.€. 0ad = c‘lg—Ti > 1. (A 3.5)
a

This generally valid condition agrees with those more precise conditions derived elsewhere for
simple geometries (Barzykin et al. 1964) and for very small Biot numbers (Todes & Melent’ev
1939; Frank-Kamenetskii 1945; Gray & Lee 19674; Adler & Enig 1964a). In essence, unless a
large temperature rise ¢/c accompanies complete adiabatic reaction, reactant consumption will
be significant at criticality under any conditions. Our steady-state treatment ignores reactant
consumption and thus tacitly assumes that 6,4 - c0. In order to make crude allowance for
reactant consumption we note that the expression

6cr(63 0ad) . 1—4e
Ocr(6,0ha = 0)  1—4(e+06,1)’

(A 3.6)

where 0,,(€, 0,4 = ) is given by (A 3.3), is a rough fit over a wide range of ¢ and 053 to known
data (Barzykin et al. 1964, Adler & Enig 19644, b) for a number of particular cases in which the

kinetics are first order.
A 3(c). High ambient temperature

Both conditions (A 3.1) and (A 3.5) impose upper limits on the range of ambient temperatures
for which the steady-state results remain accurate.
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